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ABSTRACT
The Particle swarm optimization (PSO) is a swarm intelligence algo-
rithm that simulates the predatory behavior of birds. It is inspired
by the social behavior of bird flocking. It is widely used in many
fields because of its easy implementation, high accuracy, and fast
convergence. In this article, we propose a method to improve the
performance of the PSO algorithm by combining it with a gradient
boosting regression (GBR) model. We apply our algorithm for the
optimization of octane number (express in RON) loss in the gasoline
industry. RON is the most significant indicator that reflects the com-
bustion petrol performance and it is the commercial brand name of
petrol (e.g., 89#, 92#, 95#). Our simulation results demonstrate that
RON average loss rate was greater than 30%, under the product’s
sulfur content was no greater than 5µg/g (Euro VI standard is no
greater than 10µg/g).
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1 INTRODUCTION
Soft computing techniques have shown great influences on engi-
neering [1, 2], compared to the traditional studies. There are many
optimization algorithms that come as a response to different prob-
lems. The particle swarm optimization algorithm, also known as the
bird swarm foraging algorithm, is one of the intelligent optimiza-
tion algorithms. It is a new evolutionary algorithm (EA), which
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originates from the study of natural creatures living in a group.
Each individual possesses memory and experience. By interacting
with each other or the surrounding environment, a group can carry
out very complex tasks. It was proposed by J. Kennedy and R. Eber-
hart [3]. It uses rules that is simpler than those of genetic algorithm
(GA) [4].
The PSO algorithms is a global random search algorithm based on
swarm intelligence [5], which has a vast range of applications in
many researches [6]. The superiority of the PSO algorithm in solv-
ing practical problems has been proved many times. For example,
PSO optimization can give excellent results in the image process-
ing of tidal current distribution learning [7]. The PSO algorithm
in mathematics can help scholars improve the Euler method [8].
There have been many improvements over the PSO algorithm. In
[9], a new two-subgroup particle swarm optimization algorithm
was proposed, which had been successfully used in training artifi-
cial neural networks for the construction of a practical soft sensor
in main engine Fractionator fluid catalytic cracking unit. Z Wu et
al [10] further developed a new particle swarm optimization by
partitioning the particle swarms into two equal-sized subgroups, of
which the first adopts PSO model to evolve, and the second iterates
by a cognitive model. [11] improves the convergence speed of the
PSO algorithm by using a new searching equation which take into
considerations of individual experience, social experience, and their
integration. Multi-objective optimization PSO is also proposed, with
its engineering applications being analyzed that can better deter-
mine the direction of future research [12]. To be more precisely, its
excellent optimization effect makes the PSO algorithm very popular.
However, the PSO algorithm is known to be easy in falling into the
local optimum in some problems [13, 14], which leads to the decline
of its accuracy. Some approaches have been proposed to overcome
this drawback. In [15], the inertia weight was introduced in the PSO
algorithm, which improved the algorithm’s global search perfor-
mance. A PSO model with Constriction Coefficient was constructed
in [16], and a method is adopted to dynamically adapt the inertia
weight of the PSO [17]. This paper represents a new attempt in
resolving the problem. The optimization performance based on our
proposed PSO algorithm is evaluated by data experiments.

2 PSO ALGORITHM THEORY
2.1 Standard Particle Swarm Algorithm
As above mentioned, the PSO algorithm is advocated to simulate the
behaviour of migratory birds when seeking food. In other words,
it is an abstract mathematical model that studies the behaviour of
birds when searching for food. The model has following features:
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1. Each bird is described as a point and called “particles”. Each
particle represents a solution to an optimization problem, and all
particles search for the most optimal solution in a solution space.
2. All particles have a fitness value determined by an objective
function, which is used to determine whether the current position
is either good or bad.
3. The speed of each particle determines its distance and direction
during flight for one step forward. Meanwhile, every particle has
a memory function, to be used to remember the best position and
make corresponding judgments.
Generally, with N particles in a D-dimensional solution space form-
ing a community, a vector group is defined as:

xi = (xi1,xi2, ·s,xiD )
vi = (vi1,vi2, ·sviD )

Pbesti = (pi1,pi2, ·s,piD )

Gbest =
(
pд1,pд2, ·s,pдD

) (1)

Where, vector xi = (xi1,xi2, ·s,xiD )represents the position of the
i th particle, and vectorvi = (vi1,vi2, ·s,viD ) represents the velocity
of the i th particle. Pbesti is the best position experienced by the indi-
vidual, while Gbest is the best position reported by the group expe-
rience. To prevent surpassing the limit, the range of position change
is limited to (xmin,d ,xmax,d ) in the d-dimensional (1 ≤ d ≤ D)
space, and the speed change range is limited to (−vmax,d ,vmax,d ).
Given the position and velocity of a particle, there is an updating
formula for the position and velocity of the particle, also called
iterative formula:

vk+1id = ωvkid + c1r1
(
Pbestid − xkid

)
+ c2r2

(
Gbestд − xkid

)
(2)

xk+1i = xki +v
k+1
i (3)

where, vkid and xkid are the d-dimensional components of the veloc-
ity and position of the particle i in k th iteration, ω is the inertia
weight, c1 and c2 are learning factors. r1 and r2 are random num-
bers between 0 and 1. By continuously updating equations 2) and
(3), the optimized convergence point can be obtained.

2.2 The Processing of PSO Algorithm

Algorithm 1 The PSO algorithm and flow chart are given as fol-
lows:
Start:
Step 1 Initialization:
1.The velocity vector of particles;
2.The position vector of particles;
Step 2 Calculating fitness value:
3.Calculating the fitness value of each particle;
Step 3 Updating:
4.Update the particle position and velocity based on fitness value;
5.Update Pbest and Gbest;
Step 4 Decision:
6.If satisfied with the stop condition, Continue to the next step;
Other else return the step 2 and repeat the above iteration;
Step 5 Output:
7. Output the corresponding results of the best particle;
End

PSO FLOW CHART

2.3 The Improved PSO Algorithm
The improved particle swarm algorithm formulas are as it follows:
All particles are divided into 3 parts, according to a certain propor-
tion. The ratio of each part of the particles is X, Y, Z (X+Y+Z=1).
Since the particles are easy to fall into the local optima in the later
stage, consequently, let X=1/4, Y=1/2, Z=1/4.
This part of the particles that account for 1/4 of the total is close to
its individual extreme Pbest:

vk+1id = ωvkid + c1r1
(
Pbestid − xkid

)
(4)

xk+1id = xkid +v
k+1
id (5)

This part of the particles that account for 1/2 of the total approach
global extreme Gbest:

vk+1id = ωvkid + c2r2
(
Gbestid − xkid

)
(6)

xk+1id = xkid +v
k+1
id (7)

This part of the particles that account for 1/4 of the total is close to
its historical best Ibest in each iteration:

vk+1id = ωvkid + c3r3
(
Ibestid − xkid

)
(8)

xk+1id = xkid +v
k+1
id (9)
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The inertial weight, in equation(2) given as equation(10).

ω = ωmax −
fi

fmax
(ωmax − ωmin ) (10)

Where, ωmax andωmin are the maximum and minimum number of
weighting factors. fi is the fitness value of i th particle, and fmax is
maximum fitness value of it. In PSO theory, the inertia weight plays
an important role in the convergence. We dynamically adjust its
value according to the relation between the fitness value of the
particles and Gbest in this algorithm. The flows of improved PSO
algorithm are below shown.

Algorithm 2 The Improved PSO ALGORITHM
Improved PSO FLOW

1. Construct the initial population;
2. Utilize the trained model to evaluate the fitness function for
each generation of individuals;
3. Update the position and speed of the individual according to the
above formula;
4. Ascertain whether the maximum number of iterations is
reached; otherwise, return to Step 2;
5. Output the global optimal solution;

3 EXPERIMENTS
3.1 Application of Gasoline Octane Number
In engineering practice, the focus of petrol cleaning is reducing
the content of sulfur and paraffin in petrol while maintaining its
octane number asmuch as possible. The loss value of octane number
averages between 1.37 units and the minimum value of the similar
devices is only 0.6 units [18]. Consequently, there is a lot of room
for optimization consequence. We analyzed the data produced for
four years from a petrochemical company, and used them in the
experiment. The results are implemented on the Pycharm platform
by using the Python software package.
On the one hand, the sulfur content in the raw materials is removed
as much as possible, with the objective below 5 µg/g. On the other
hand, the octane number of the product, representing the quality
of gasoline, is guaranteed to be as high as possible. As a result, the
RON loss should be decreased in the refining process.
We chose 29 possible representative and independent host variables
from 367 possibilities (seven raw material properties, two spent
adsorbent properties, two regenerated adsorbent properties, two
product properties and another 354 operating variables) through the
normalization of tabular data and reduction of the dimensionality.
The 29 variables are shown in Table 1

3.2 The Construct of Predict Model
Based on the traditional machine learning methods [19], the boost-
ing regression can be used for the prediction. Boosting sets up a
strong learner by combining weak learners. AdaBoost and Boost-
ing tree are the most famous algorithms. In order to improve the
accuracy of the prediction model, three indicators were consid-
ered for three regression models (AdaBoosting regression, Gradient
Boosting Regression and xgboost): TheMean Absolute Error (MAE),
Mean Absolute Percentage Error(MAPE), Root Mean Square Error

Table 1: The 29 Variables

Raw material RON S-ZORB.AT_5201.PV

Raw material saturated
hydrocarbon,v%

S-ZORB.SIS_TEX_3103B.PV

Raw material olefin,v% S-ZORB.TE_7504.DACA
S-ZORB.FT_9401.PV S-ZORB.TE_5001.DACA
S-ZORB.FT_1002.PV S-ZORB.FT_1301.DACA
S-ZORB.FC_3103.PV S-ZORB.AT_1001.DACA
S-ZORB.A-0010.DACA.PV S-ZORB.TE_7106B.DACA
S-ZORB.A-0004.DACA.PV S-ZORB.TE_5008.DACA
S-ZORB.FT_5104.PV S-ZORB.TE_1105.PV
S-ZORB.TC_2801.PV S-ZORB.PDI_1102.PV
S-ZORB.FC_2801.PV S-ZORB.AT_1001.PV
S-ZORB.TE_2601.PV S-ZORB.FT_9403.PV
S-ZORB.PC_2105.PV S-ZORB.FC_3101.PV
S-ZORB.FT_1001.PV S-ZORB.TE_5201.DACA
S-ZORB.TE_1001.PV

(RMSE). Ron loss and sulfur content are predicted by choosing the
best one out of three regression models.
The 29 main variables are divided into the training set and the test
set with 8:2. The linear regression model is therefore trained. It is
necessary to perform k-fold cross-validation on the model (where,
k=10). AdaBoosting regression, Gradient Boosting Regression and
xgboost were used to establish the regression model. The values of
MAPE, MAE and RMSE are shown in Table 2.
The data in the table shows that Gradient Boosting Regression
(GBR) is most effective as the average of its three smallest indices is
smaller than those of the other two models. For this reason, we use
GBR to predict product RON and sulfur content. The result (take
the first 10) is shown in Table 3 below:

3.3 Optimizing RON Loss
We need to consider the factors of the main 26 variables (Remove
three non-operating variables from 29 variables). The raw materials
were taken into consideration during the optimization process and
the properties of the spent adsorbent and regenerated adsorbent
remained unchanged. The improved PSO algorithm and GBR model
are used to optimize the Ron loss.
The next step is to calculate fitness values F1 and F2. They respec-
tively correspond to the predictive value of the sulfur content and
to the predictive value of the RON loss ratio. We apply the im-
proved PSO algorithm in order to find the optimal solution, and
then use the established sulfur content and Ron loss prediction
model to anticipate them in the optimal solution. The total fitness
value F = aF1 + bF2(a+b=1), and adjust a, b in table 4 and related
parameters in table 5, the best parameter values and optimized
results are as shown below:
The improved method optimized the sulfur content and Ron loss of
325 samples. The optimized sulfur content and Ron loss from 325
samples are shown in Figure 1 and Figure 2
As it can be seen in the Figure 2, the octane number loss of most
samples can be reduced by more than 30%. Furthermore, it is en-
sured that under the constraint, the sulfur content is no more than
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Table 2: The RON and Sulfur Content of Three Indicators

ModelIndicators AdaBoosting Regression Gradient Boosting Regression Xgboost

RON_MAE(%) 0.25205590 0.20739302 0.23081048
RON_MAPE(%) 0.284972849 0.234871555 0.261357919
RON_RMSE(%) 0.31948939 0.26360741 0.29326059
S_ MAE 1.08675993 0.80330176 0.77734607
S_MAPE 30.47090266 21.03690858 20.56208544
S_ RMSE 1.397028651 1.237394766 1.244449685

Table 3: Sulfur and RON Predicted Value

RON value Sulfur content value Predicted RON value Predicted Sulfur content value

87.02 3.2 86.69397693 3.403884026
89.2 6.6 89.20616846 5.664413107
90.12 3.2 90.12820039 3.383784317
88.02 3.2 87.58520853 2.93067094
88.12 3.2 88.13253059 3.767953509
89.78 3.5 89.70735273 4.45907903
88.36 3.2 88.50659545 3.632891122
87.52 3.2 87.70223066 9.323975227
87.72 3.2 87.40242234 4.06039073
88.5 7.6 88.50117914 6.702861094

Table 4: Various Parameters

Parameter r c1 c2 c3 a b T Vmax d ω number

Value [0,1] 2 2 2 0.2 0.8 50 d/20 26 [0.1,0.9] 20

Table 5: Ron Optimization Results

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
RON average Loss Rate 0.34 0.40 0.32 0.31 0.30 0.36 0.33 0.33 0.31

Figure 1: The Sulfur Content Optimization. Figure 2: RON Loss Optimization.
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Table 6: A Fraction of the Data

S-ZORB.TE_1001.PV 62 49 74 68 40 48 43 62 42 65

S-ZORB.AT_1001.PV 630 390 150 420 190 190 280 370 280 440
S-ZORB.PDI_1102.PV 0.15 0.15 0.15 0.05 0.05 0.2 0.05 0.1 0.05 0.2
S-ZORB.FC_2801.PV 700 700 650 850 700 750 850 800 700 700

S-ZORB.AT-0004.DACA.PV 0.6 0.5 0.7 0.7 0.5 0.5 0.7 0.7 0.7 0.7
S-ZORB.AT-0010.DACA.PV 0.6 1.6 1.5 1.2 1.6 1.1 0.9 1.6 0.7 1.6

optimized_S 4.54 4.72 4.46 4.06 4.61 4.65 4.92 4.94 4.52 4.52
optimized_RON 0.28 0.33 0.39 0.36 0.31 0.29 0.49 0.42 0.40 0.43

Figure 3: The RON Loss and Sulfur Content Trajectory of
Sample No. 133.

5µg/g. We find out from Table 4, when a=0.2, b=0.8, that the opti-
mization effect is the best. The average reduction ratio of the RON
loss value is the highest and reaches 40%.
We select those whose RON loss reduction is greater than 30% from
325 samples and only show the partial optimized data in Table 6
As shown in Figure 3, only by taking the No. 133 optimized sample
it is possible to better understand the change trajectory of the
corresponding RON loss and sulfur content during the optimization
and adjustment process of the main variables.

4 CONCLUSION
The classical bionics algorithm known as PSO algorithm is intro-
duced in this paper. Moreover, a improvement based on PSO has
been applied to optimize the RON loss and sulfur content during the
refining process of gasoline. The particle swarms are partitioned
into three parts of sizes 1/4, 1/2 and 1/4 respectively. The inertia
weights are dynamically adjusted according to the fitness values of
the particles. In the particle swarm, the individual fitness value is
kept to be as close as possible to the maximum fitness value of this
part of the particles. It prevents the PSO algorithm fall into local
optima and enhances the particle’s diversity. By combing with the
GBR regression model for prediction, the Ron loss is reduced as
much as possible and a better optimization effect is being achieved.
The algorithm proposed in this paper can not only be applied to
RON optimization problem, but also be to other practical engineer-
ing projects.

However, to a certain extent, this algorithm has some shortcomings.
It cannot guarantee a more stable convergence effect in the update
of inertial weights. In future research, it needs to be combined with
the other algorithms to enhance the optimized efficiency of the
model.
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